Hypergraphs, Quasi-randomness, and Conditions for Regularity
نویسندگان
چکیده
Haviland and Thomason and Chung and Graham were the first to investigate systematically some properties of quasi-random hypergraphs. In particular, in a series of articles, Chung and Graham considered several quite disparate properties of random-like hypergraphs of density 1/2 and proved that they are in fact equivalent. The central concept in their work turned out to be the so called deviation of a hypergraph. They proved that having small deviation is equivalent to a variety of other properties that describe quasi-randomness. In this paper, we consider the concept of discrepancy for k-uniform hypergraphs with an arbitrary constant density d (0 < d < 1) and prove that the condition of having asymptotically vanishing discrepancy is equivalent to several other quasi-random properties of H, similar to the ones introduced by Chung and Graham. In particular, we prove that the correct ‘spectrum’ of the s-vertex subhypergraphs is equivalent to quasi-randomness for any s ≥ 2k. Our work may be viewed as a continuation of the work of Chung and Graham, although our proof techniques are different in certain important parts.
منابع مشابه
Hypergraph regularity and quasi-randomness
Thomason and Chung, Graham, and Wilson were the first to systematically study quasi-random graphs and hypergraphs, and proved that several properties of random graphs imply each other in a deterministic sense. Their concepts of quasi-randomness match the notion of ε-regularity from the earlier Szemerédi regularity lemma. In contrast, there exists no “natural” hypergraph regularity lemma matchin...
متن کاملOn characterizing hypergraph regularity
Szemerédi’s Regularity Lemma is a well-known and powerful tool in modern graph theory. This result led to a number of interesting applications, particularly in extremal graph theory. A regularity lemma for 3-uniform hypergraphs developed by Frankl and Rödl [8] allows some of the Szemerédi Regularity Lemma graph applications to be extended to hypergraphs. An important development regarding Szeme...
متن کاملEquivalent Conditions for Regularity
Haviland and Thomason and Chung and Graham were the first to investigate systematically some properties of quasi-random hypergraphs. In particular, in a series of articles, Chung and Graham considered several quite disparate properties of random-like hypergraphs of density 1/2 and proved that they are in fact equivalent. The central concept in their work turned out to be the so called deviation...
متن کاملRegularity Lemma for k-uniform hypergraphs
Szemerédi’s Regularity Lemma proved to be a very powerful tool in extremal graph theory with a large number of applications. Chung [Regularity lemmas for hypergraphs and quasi-randomness, Random Structures and Algorithms 2 (1991), 241–252], Frankl and Rödl [The uniformity lemma for hypergraphs, Graphs and Combinatorics 8 (1992), 309–312, Extremal problems on set systems, Random Structures and A...
متن کاملA Simple Regularization of Graphs
The well-known regularity lemma of E. Szemerédi for graphs (i.e. 2-uniform hypergraphs) claims that for any graph there exists a vertex partition with the property of quasi-randomness. We give a simple construction of such a partition. It is done just by taking a constant-bounded number of random vertex samplings only one time (thus, iteration-free). Since it is independent from the definition ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 97 شماره
صفحات -
تاریخ انتشار 2002